Esta postagem é mais um lembrete importante.
Para quem não se lembra, discutir um sistema linear (um conjunto formado
por equações lineares que pode ser expresso na forma de matriz)
significa classificá-lo da seguinte maneira:
- Compatível (ou Possível)
- Determinado => formado por uma solução única
- Indeterminado => formado por infinitas soluções
- Incompatível (ou Impossível) => não tem solução
O resultado classificatório acima está diretamente ligado com o
determinante da matriz formada pelas equações lineares, o que é o foco
desta postagem. A relação é a seguinte:
- Det ≠ 0 => Sistema Compatível e Determinado
- Det = 0
- Se o determinante de algumas das incógnitas for diferente de 0, o sistema é Impossível
- Se todos os determinantes da incógnitas forem nulos, o sistema, se tiver solução, será indeterminado
Um último lembrete importante é:
As colunas (ou linhas) de um sistema linear (podendo ser expresso na
forma de matriz) podem também ser tratados como vetores, os vetores
colunas (ou linhas). Tais vetores podem ou não ser linearmente
independentes entre si. Apenas relembrando, vetores linearmente
independentes formam uma base, uma base com a qual é possível escrever
vetores através da combinação linear de seus vetores componentes. Um
exemplo claro disso é o tradicional eixo cartesiano com 2 eixos (ou 3 ou
mais). Os vetores unitários das posições x, y e z, ou seja, i, j e k,
podem ser combinados para expressar qualquer vetor nesta base, sendo a
base a expressão das componentes dos vetores em questão.
A determinação de um conjunto de vetores como sendo linearmente
dependentes ou independentes está também ligado aos determinantes, da
seguinte maneira:
- Det = 0 => dependência linear
- Det ≠ 0 => independência linear
Assim sendo, ao tratar um conjunto de vetores matricialmente e
calculando o respectivo determinante, é possível saber se os vetores
envolvidos formam uma base para a geração de outros vetores, assim como
saber a natureza do sistema linear correspondente, o resultado de sua
discussão.
Abraços!
Subscribe to:
Post Comments (Atom)
obrigado. Estou cursando algebra linear na uenf do RJ. Estou pesquisando a relação entre o determinante, a forma escalonada, a quantidade de linhas e colunas MxN, o posto, a forma num grafico linha, plano... etc. Seria bom se o prof explicasse na aula, ou tivesse um site ou no livro de algebra. Mas n esta tudo num lugar só, tem q ir juntando as info.
ReplyDeleteRespect and I have a nifty proposal: When Home Renovation house renovation loan
ReplyDelete